97 research outputs found

    Non-spatial neglect for the mental number line

    Get PDF
    Several psychophysical investigations, expanding the classical introspective observations by Galton, have suggested that the mental representation of numbers takes the form of a number line along which magnitude is positioned in ascending order according to reading habits, i.e. from left to right in Western cultures. In keeping with the evidence, pathological rightward deviations in the bisection of number intervals due to right brain damage are generally interpreted as originating from a purely spatial-attentional deficit in the processing of the left side of number intervals. However, consistent double dissociations between defective processing of the left side of physical and mental number space have called into question the universality of this interpretation. Recent evidence suggests a link between rightward deviations in number space and defective memory for both spatial and non-spatial sequences of items. Here we describe the case of a left brain-damaged patient exhibiting right-sided neglect for extrapersonal and representational space, and left-sided neglect on the mental number line. Accurate neuropsychological examination revealed that the apparent left-sided neglect in the bisection of number intervals had a purely non-spatial origin and was based on mnemonic difficulties for the initial items of verbal sequences presented visually at an identical spatial position. These findings show that effective position-based verbal working memory might be crucial for numerical tasks that are usually considered to involve purely spatial representation of numerical magnitudes. © 2011 Elsevier Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Towards a monolithic optical cavity for atom detection and manipulation

    Full text link
    We study a Fabry-Perot cavity formed from a ridge waveguide on a AlGaAs substrate. We experimentally determined the propagation losses in the waveguide at 780 nm, the wavelength of Rb atoms. We have also made a numerical and analytical estimate of the losses induced by the presence of the gap which would allow the interaction of cold atoms with the cavity field. We found that the intrinsic finesse of the gapped cavity can be on the order of F ~ 30, which, when one takes into account the losses due to mirror transmission, corresponds to a cooperativity parameter for our system C ~ 1

    GaN/Ga2O3 Core/Shell Nanowires Growth: Towards High Response Gas Sensors

    Get PDF
    International audienceThe development of sensors working in a large range of temperature is of crucial importance in areas such as monitoring of industrial processes or personal tracking using smart objects. Devices integrating GaN/Ga2O3 core/shell nanowires (NWs) are a promising solution for monitoring carbon monoxide (CO). Because the performances of sensors primarily depend on the material properties composing the active layer of the device, it is essential to control them and achieve material synthesis in the first time. In this work, we investigate the synthesis of GaN/Ga2O3 core-shell NWs with a special focus on the formation of the shell. The GaN NWs grown by plasma-assisted molecular beam epitaxy, are post-treated following thermal oxidation to form a Ga2O3-shell surrounding the GaN-core. We establish that the shell thickness can be modulated from 1 to 14 nm by changing the oxidation conditions and follows classical oxidation process: A first rapid oxide-shell growth, followed by a reduced but continuous oxide growth. We also discuss the impact of the atmosphere on the oxidation growth rate. By combining XRD-STEM and EDX analyses, we demonstrate that the oxide-shell is crystalline, presents the β-Ga2O3 phase, and is synthesized in an epitaxial relationship with the GaN-core

    Rad51 Polymerization Reveals a New Chromatin Remodeling Mechanism

    Get PDF
    Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA and the influence of nucleosomes on Rad51 polymerization mechanism to investigate its putative role in chromatin accessibility to recombination machinery. We combined biochemical approaches, transmission electron microscopy (TEM) and atomic force microscopy (AFM) for analysis of the effects of the Rad51 filament on chromatinized templates. Quantitative analyses clearly demonstrated the occurrence of chromatin remodeling during nucleoprotein filament formation. During Rad51 polymerization, recombinase proteins moved all the nucleosomal arrays in front of the progressing filament. This polymerization process had a powerful remodeling effect, as Rad51 destabilized the nucleosomes along considerable stretches of DNA. Similar behavior was observed with RecA. Thus, recombinase polymerization is a powerful mechanism of chromatin remodeling. These remarkable features open up new possibilities for understanding DNA recombination and reveal new types of ATP-dependent chromatin dynamics

    From hemisomatognosia towards disturbances of the postural body scheme

    No full text
    status: publishe

    Het kwetsbare brein

    No full text
    status: publishe

    NAH en tewerkstelling

    No full text
    status: publishe
    • …
    corecore